Unit 2: Functions as the Cornerstones of Algebra

Video by Mr. Williamson Newfield Senior High School

Based on Kirk Weiler's emathinstruction lessons

Unit 2: Video Overview

- Unit 2: Lesson Overview
- CCLS Associated with Unit 2
- Basic Terminology
- Notations for Domain and Range
- Identifying Functions
- Function Notation
- Function Composition
- One-to-One Functions
- Inverse Functions
- Key Features of Functions (3 Slides)
- Summary

Unit 2: Lesson Overview

- 2.1 Introduction to Functions
- 2.2 Function Notation
- 2.3 Function Composition
- 2.4 Domain and Range of a Function
- 2.5 One-to-One Functions
- 2.6 Inverse Functions
(F.BF.4)
- 2.7 Key Features of Functions
(F.IF. 9 and F.IF.4)

CCLS Associated with Unit 2

* F.BF. 4 - Find inverse functions.

Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse.

* F.IF. 4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.
* F.IF. 9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.

Basic Terminology

* Function - A function is any "rule" that assigns exactly one output value (y-value) for each input value (x-value). These rules can be expressed in different ways, the most common being equations, graphs, and tables of values. We call the input variable independent and output variable dependent.
- Domain - All possible input values (x-values).
* Range - All possible output values (y-values)

Notations for Domain and Range

* All Real Numbers
* Set-Builder Notation
* Inequalities
* Interval Notation

Identifying Functions

* Vertical Line Test (for Graphs)
* Examining a Table of Values
* Examining Equations

Function Notation

* Proper Function Notation
* Evaluating Functions

Function Composition

* Proper Function Composition Notation
* Evaluating Compositions of Functions

One-to-One Functions

* One-to-One Function - A function $f(x)$ is called one-to-one if $\mathrm{a} \neq \mathrm{b}$ implies that $f(a) \neq f(b)$.
* Horizontal Line Test

Inverse Functions

* Existence of an Inverse Function - A function has an inverse that is a function if it is a one-to-one function.
* How to find an inverse function - Switch the x and y variables, then solve for y.
* Proper Inverse Function Notation
* Domain and Range of Inverse Functions
* Graphs of Inverse Functions - Reflection through the $y=x$ line

Key Features of Functions and Their Graphs - Slide 1

* x-intercepts
* y-intercepts
* Zeroes or Roots

Key Features of Functions and Their Graphs - Slide 2

- Maximum
* Minimum
* Increasing
* Decreasing

Key Features of Functions and Their Graphs - Slide 3

$$
f(x)>0
$$

- $f(x)<0$

$$
f(x)=0
$$

Summary of the Most Important Information

- Students should be able to:
* Determine whether a given relationship is a function.
* Determine if a function is one-to-one.
* Use proper function notation to state the equation of a function, its inverse, or a composition of functions.
* Evaluate functions and compositions of functions.
* Find the equation of an inverse function.
* State the domain and range of a function or its inverse.
* Find the x-intercepts, y-interecept, zeroes, roots, maximums and minimums of a function based on its graph or equation.
* Find the x-values for when a function's value is positive, negative, or zero.

