CC Algebra II - Regents Review

Unit 2: Functions as the Cornerstones of Algebra

Video by Mr. Williamson Newfield Senior High School

Based on Kirk Weiler's emathinstruction lessons

Unit 2: Video Overview

- Unit 2: Lesson Overview
- CCLS Associated with Unit 2
- Basic Terminology
- Notations for Domain and Range
- Identifying Functions
- Function Notation
- Function Composition
- One-to-One Functions
- Inverse Functions
- Key Features of Functions (3 Slides)
- Summary

Unit 2: Lesson Overview

- 2.1 Introduction to Functions
- 2.2 Function Notation
- 2.3 Function Composition
- 2.4 Domain and Range of a Function
- 2.5 One-to-One Functions
- 2.6 Inverse Functions (F.BF.4)
- 2.7 Key Features of Functions

(F.IF.9 and F.IF.4)

CCLS Associated with Unit 2

* F.BF.4 - Find inverse functions.

Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.

- * F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.
- * F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). *For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.* Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.

Basic Terminology

Function - A function is any "rule" that assigns exactly one output value (*y*-value) for each input value (*x*-value). These rules can be expressed in different ways, the most common being equations, graphs, and tables of values. We call the input variable <u>independent</u> and output variable <u>dependent</u>.

- * **Domain** All possible input values (*x*-values).
- **Range** All possible output values (y-values)

Notations for Domain and Range

- All Real Numbers
- Set-Builder Notation
- * Inequalities
- Interval Notation

Identifying Functions

Vertical Line Test (for Graphs)

Examining a Table of Values

Examining Equations

Function Notation

Proper Function Notation

Evaluating Functions

Function Composition

Proper Function Composition Notation

Evaluating Compositions of Functions

One-to-One Functions

* **One-to-One Function** - A function f(x) is called one-to-one if $a \neq b$ implies that $f(a) \neq f(b)$.

* Horizontal Line Test

Inverse Functions

- * **Existence of an Inverse Function** A function has an inverse that is a function if it is a one-to-one function.
- * How to find an inverse function Switch the *x* and *y* variables, then solve for *y*.

* **Proper Inverse Function Notation**

* **Domain and Range** of Inverse Functions

* **Graphs** of Inverse Functions - Reflection through the y = x line

Key Features of Functions and Their Graphs - Slide 1

* x-intercepts

* *y*-intercepts

Zeroes or Roots

Key Features of Functions and Their Graphs - Slide 2

Maximum

Minimum

* Increasing

* Decreasing

Key Features of Functions and Their Graphs - Slide 3

* f(x) > 0

* f(x) < 0

* f(x) = 0

Summary of the Most Important Information

- Students should be able to:
 - * Determine whether a given relationship is a function.
 - Determine if a function is one-to-one.
 - * Use proper function notation to state the equation of a function, its inverse, or a composition of functions.
 - Evaluate functions and compositions of functions.
 - * Find the equation of an inverse function.
 - * State the domain and range of a function or its inverse.
 - * Find the *x*-intercepts, *y*-interecept, zeroes, roots, maximums and minimums of a function based on its graph or equation.
 - * Find the *x*-values for when a function's value is positive, negative, or zero.